Malate Decarboxylation by Kalanchoë daigremontiana Mitochondria and Its Role in Crassulacean Acid Metabolism.
نویسنده
چکیده
Mitochondria isolated from Kalanchoë daigremontiana, a Crassulacean acid metabolism plant, decarboxylate added malate to pyruvate at rates of up to 100 micromoles per hour per milligram original chlorophyll in the presence of ADP. Omitting ADP reduces this rate by approximately 50%. Antimycin A inhibits malate decarboxylation and this inhibition could be relieved by addition of aspartate and alpha-ketoglutarate to the mitochondria. Increasing the pH of the external medium inhibited malate decarboxylation; a dramatic decrease in pyruvate production was observed between pH 7.2 and pH 7.4. It is suggested that cytoplasmic pH changes may regulate the contribution of mitochondria to malate decarboxylation in the light in vivo.
منابع مشابه
Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination.
Discrimination against (18)O during dark respiration in tissues of Kalanchoë daigremontiana, Medicago sativa, and Glycine max was measured using an on-line system that enabled direct measurements of the oxygen fractionation of samples in a gas-phase leaf disk electrode unit. Discrimination factors for cytochrome pathway respiration were 18.6 to 19.8%(o) for all tissues. However, discrimination ...
متن کاملEffects of light quantity and quality on the decarboxylation of malic Acid in crassulacean Acid metabolism photosynthesis.
The rate of malic acid consumption in the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier was found to be more rapid than the rate of photosynthetic oxygen evolution under all levels of irradiation by white light. This accounts for the accumulation of carbon dioxide in CAM tissues in the light.Action spectra of malate consumption and photosynthetic oxygen evol...
متن کاملDiurnal Changes in Metabolite Levels and Crassulacean Acid Metabolism in Kalanchoë daigremontiana Leaves.
Diurnal changes in levels of selected metabolites associated with glycolysis, the C(3) cycle, C(4)-organic acids, and storage carbohydrates were analyzed in active Kalanchoë daigremontiana Crassulacean acid metabolism leaves. Three metabolic transition periods occurred each day. During the first two hours of light, nearly all of the metabolite pools underwent transient changes. Beginning at day...
متن کاملMalate Metabolism in Leaf Mitochondria from the Crassulacean Acid Metabolism Plant Kalanchoë blossfeldiana Poelln.
The mechanisms and the controlling factors of malate oxidation by mitochondria from leaves of Kalanchoë blossfeldiana Poelln. plants performing Crassulacean acid metabolism were investigated using Percollpurified mitochondria. The effects of pH and of various cofactors (ATP, NAD(+), coenzyme A) on malate dehydrogenase (EC 1.1.1.37) and malic enzyme (EC 1.1.1.39) solubilized from these mitochond...
متن کاملModulation of Rubisco Activity during the Diurnal Phases of the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana.
The regulation of Rubisco activity was investigated under high, constant photosynthetic photon flux density during the diurnal phases of Crassulacean acid metabolism in Kalanchoë daigremontiana Hamet et Perr. During phase I, a significant period of nocturnal, C(4)-mediated CO(2) fixation was observed, with the generated malic acid being decarboxylated the following day (phase III). Two periods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 65 4 شماره
صفحات -
تاریخ انتشار 1980